A representation theorem for cardinal algebras

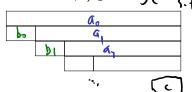
Ronnie Chen

October 25, 2021

Cardinal algebras

A cardinal algebra (Tarski 1949) $A = (A, +, 0, \Sigma)$ consists of

- > a commutative monoid (A, +, 0);
- ▶ an infinitary operation $\sum : A^{\mathbb{N}} \to A$; obeying the axioms
- $a_0 + \sum_{i < \infty} a_{i+1} = \sum_{i=1}^{n} a_i := \sum_{i=1}^{n} \left(a_{i_1} a_{i_1} \right)$ $\sum_{i < \infty} (a_i + b_i) = \sum_{i < \infty} c_i, \quad \forall i \in [b_i]; \quad (b_i); \quad (b_i);$



5: 9:

$$\blacktriangleright \overline{\mathbb{N}} := \mathbb{N} \cup \{\infty\}$$

- ▶ [0,∞]
- all cardinals (< κ)

$$\blacktriangleright \ \overline{\mathbb{N}} := \mathbb{N} \cup \{\infty\}$$

• all cardinals (<
$$\kappa$$
) (in ZF+DC)

$$\blacktriangleright \ \overline{\mathbb{N}} := \mathbb{N} \cup \{\infty\}$$

▶ all cardinals (< κ) (in ZF+DC)

► (Kechris–Macdonald 2016) For CBERs (X, E), (Y, F), $E \sim_B F \iff \exists$ Borel $f : X \to Y$ inducing $X/E \cong Y/F$

$$\blacktriangleright \ \overline{\mathbb{N}} := \mathbb{N} \cup \{\infty\}$$

• all cardinals (< κ) (in ZF+DC)

► (Kechris–Macdonald 2016) For CBERs (X, E), (Y, F), $E \sim_B F \iff \exists$ Borel $f : X \rightarrow Y$ inducing $X/E \cong Y/F$

Then {all CBERS}/ \sim_B is a cardinal algebra under \bigsqcup .

(Tarski) All commutativity + associativity laws hold, e.g.,

$$\sum_{i<\infty} \mathsf{a}_i = \sum_{i<\infty} \mathsf{a}_{\mathsf{f}(i)}$$
 for any $f:\mathbb{N}\cong\mathbb{N}$

(Tarski) All commutativity + associativity laws hold, e.g.,

$$\sum_{i<\infty}a_i=\sum_{i<\infty}a_{f(i)}$$
 for any $f:\mathbb{N}\cong\mathbb{N}$

► The preorder

$$a \leq b :\iff \exists c (a + c = b)$$

(Tarski) All commutativity + associativity laws hold, e.g.,

$$\sum_{i<\infty} a_i = \sum_{i<\infty} a_{f(i)}$$
 for any $f:\mathbb{N}\cong\mathbb{N}$

The preorder

$$a \leq b :\iff \exists c (a + c = b)$$

is a partial order (Schröder-Bernstein theorem).

(Tarski) All commutativity + associativity laws hold, e.g.,

$$\sum_{i<\infty} a_i = \sum_{i<\infty} a_{f(i)}$$
 for any $f:\mathbb{N}\cong\mathbb{N}$

The preorder

$$a \leq b :\iff \exists c (a + c = b)$$

is a partial order (Schröder-Bernstein theorem).

$$\blacktriangleright \sum_{i<\infty} a_i = \bigvee_{n<\infty} \sum_{i< n} a_i.$$

(Tarski) All commutativity + associativity laws hold, e.g.,

$$\sum_{i<\infty}a_i=\sum_{i<\infty}a_{f(i)}$$
 for any $f:\mathbb{N}\cong\mathbb{N}$

The preorder

$$a \leq b :\iff \exists c (a + c = b)$$

is a partial order (Schröder-Bernstein theorem).

$$\sum_{i < \infty} a_i = \bigvee_{n < \infty} \sum_{i < n} a_i.$$

$$\sum_{i < \infty} \text{Corollary: every } a_0 \le a_1 \le a_2 \le \cdots \text{ has a join,}$$

$$a_0 \neq b_0 \quad a_0 \neq b_0 \quad b_0 \neq b_0$$

(Tarski) All commutativity + associativity laws hold, e.g.,

$$\sum_{i<\infty} a_i = \sum_{i<\infty} a_{f(i)}$$
 for any $f:\mathbb{N}\cong\mathbb{N}$

The preorder

$$a \leq b :\iff \exists c (a + c = b)$$

is a partial order (Schröder-Bernstein theorem).

$$\blacktriangleright \sum_{i<\infty} a_i = \bigvee_{n<\infty} \sum_{i< n} a_i.$$

Corollary: every a₀ ≤ a₁ ≤ a₂ ≤ ··· has a join, over which + distributes: b + ∀_i a_i = ∀_i(b + a_i).

(Tarski) All commutativity + associativity laws hold, e.g.,

$$\sum_{i<\infty} a_i = \sum_{i<\infty} a_{f(i)}$$
 for any $f:\mathbb{N}\cong\mathbb{N}$

The preorder

$$a \leq b :\iff \exists c (a + c = b)$$

is a partial order (Schröder-Bernstein theorem).

$$\blacktriangleright \sum_{i<\infty} a_i = \bigvee_{n<\infty} \sum_{i< n} a_i.$$

Corollary: every a₀ ≤ a₁ ≤ a₂ ≤ ··· has a join, over which + distributes: b + ∀_i a_i = ∀_i(b + a_i).

If binary meets exist, then so do binary joins, and

$$a \wedge \bigvee_{i < \infty} b_i = \bigvee_{i < \infty} (a \wedge b_i),$$

 $a + (b \wedge c) = (a + b) \wedge (a + c),$
 $a + (b \lor c) = (a + b) \lor (a + c).$

(cancellation) For
$$1 \le n < \infty$$
, if $n \cdot a = n \cdot b$, then $a = b$.

• (cancellation) For $1 \le n < \infty$, if $n \cdot a = n \cdot b$, then a = b. More generally, if $n \cdot a \le n \cdot b$, then $a \le b$.

(cancellation) For 1 ≤ n < ∞, if n ⋅ a = n ⋅ b, then a = b.
 More generally, if n ⋅ a ≤ n ⋅ b, then a ≤ b.

▶ (Tarski, Chuaqui 1968) Thus, $\forall a \exists \leq 1 a/n$ s.t. $n \cdot (a/n) = a$.

- (cancellation) For 1 ≤ n < ∞, if n ⋅ a = n ⋅ b, then a = b.
 More generally, if n ⋅ a ≤ n ⋅ b, then a ≤ b.
- (Tarski, Chuaqui 1968) Thus, ∀a∃^{≤1}a/n s.t. n · (a/n) = a. This extends to a σ-additive action

$$egin{aligned} & \mathsf{N} imes \mathsf{A} \longrightarrow \mathsf{A} \ & (r, a) \longmapsto r \cdot a \end{aligned}$$

of the σ -submonoid $N \subseteq [0, \infty]$ generated by all such 1/n (either \mathbb{N}/n for the largest such n, or $[0, \infty]$).

- (cancellation) For 1 ≤ n < ∞, if n ⋅ a = n ⋅ b, then a = b.
 More generally, if n ⋅ a ≤ n ⋅ b, then a ≤ b.
- (Tarski, Chuaqui 1968) Thus, ∀a∃^{≤1}a/n s.t. n · (a/n) = a. This extends to a σ-additive action

$$egin{aligned} N imes A & \longrightarrow A \ (r,a) & \longmapsto r\cdot a \end{aligned}$$

of the σ -submonoid $N \subseteq [0, \infty]$ generated by all such 1/n (either \mathbb{N}/n for the largest such n, or $[0, \infty]$).

▶ (Fillmore 1964) If $na \leq (n+1)b$ for all $n \in \mathbb{N}$, then $a \leq b$.

- (cancellation) For 1 ≤ n < ∞, if n ⋅ a = n ⋅ b, then a = b.
 More generally, if n ⋅ a ≤ n ⋅ b, then a ≤ b.
- (Tarski, Chuaqui 1968) Thus, ∀a∃^{≤1}a/n s.t. n · (a/n) = a. This extends to a σ-additive action

$$egin{aligned} N imes A & \longrightarrow A \ (r,a) & \longmapsto r\cdot a \end{aligned}$$

of the σ -submonoid $N \subseteq [0, \infty]$ generated by all such 1/n (either \mathbb{N}/n for the largest such n, or $[0, \infty]$).

▶ (Fillmore 1964) If $na \leq (n+1)b$ for all $n \in \mathbb{N}$, then $a \leq b$.

Moral: all "natural" properties of $\left[0,\infty\right]$ seem to hold in all cardinal algebras.

A universal Horn axiom (in $\mathcal{L}_{\infty\infty}$) is one of the form $\forall \vec{x} \left(\bigwedge_{i} \phi_{i}(\vec{x}) \implies \psi(\vec{x}) \right) \qquad (\phi_{i}, \psi \text{ atomic}).$

A universal Horn axiom (in $\mathcal{L}_{\infty\infty}$) is one of the form

$$orall ec x \left(igwedge_i \phi_i(ec x) \implies \psi(ec x)
ight) \qquad (\phi_i, \psi ext{ atomic}).$$

General fact A structure \mathcal{M} satisfies the universal Horn theory of a class of structures \mathcal{K} iff it embeds into a product of structures in \mathcal{K} .

A universal Horn axiom (in $\mathcal{L}_{\infty\infty}$) is one of the form

$$orall ec x \left(igwedge_i \phi_i(ec x) \implies \psi(ec x)
ight) \qquad (\phi_i, \psi ext{ atomic}).$$

General fact A structure \mathcal{M} satisfies the universal Horn theory of a class of structures \mathcal{K} iff it embeds into a product of structures in \mathcal{K} . Moreover, one can present models $\langle G \mid R \rangle$ of such axioms.

A universal Horn axiom (in $\mathcal{L}_{\infty\infty}$) is one of the form

$$orall ec x \left(igwedge_i \phi_i(ec x) \implies \psi(ec x)
ight) \qquad (\phi_i, \psi ext{ atomic}).$$

General fact A structure \mathcal{M} satisfies the universal Horn theory of a class of structures \mathcal{K} iff it embeds into a product of structures in \mathcal{K} . Moreover, one can present models $\langle G \mid R \rangle$ of such axioms.

Regard a card alg A as a $(+, 0, \leq, \forall)$ -structure, obeying axioms:

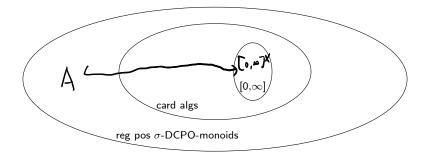
- ► (A, \leq, \forall) is a σ -DCPO: poset of Iner. (tbl. joins
- (A,+,0) is a (comm) monoid, s.t. + is produce & different with the first of the product of the pr

► A is regular: $\forall n (n \in (A|)b) = a \in b$. A general model is a regular positive σ -DCPO-monoid.

Embedding σ -DCPO-monoids

Theorem (C. 2021+)

Every reg positive σ -DCPO-monoid A embeds into some $[0,\infty]^X$.



f: X-) [0,6] Embedding σ -DCPO-monoids $[0, \infty]^{2} \rightarrow [0, \infty] \quad B(x) \in B([0, \infty])$ Theorem (C. 2021+) Every reg positive σ -DCPO-monoid A embeds into some $[0,\infty]^X$. ► When A is ctbly pres., X on be st Brol & ~~ men Borol mys. ► In general, X is a Bonel Locale. (Bool O-ab, regarded es a formal "Bonel spue") General fact A structure M satisfies the universal Horn theory of a class of structures K iff it embeds into a product of structures in K. is a Ably directed colimit of structs which Corollary

The axioms of regular positive σ -DCPO-monoids axiomatize the (countable) universal (Horn) theory of cardinal algebras (or $[0,\infty]$).

With meets and joins

A regular positive σ -frame-monoid $(A, +, 0, \leq, \bigvee, \land, \infty)$ is:

- ▶ a partially ordered comm monoid $(A, +, 0, \leq)$, with + monotone;
- with least element 0 (**positive**) and greatest element ∞ ;
- ▶ with ctbl joins and finite meets s.t. $a \land \bigvee_i b_i = \bigvee_i (a \land b_i)$;
- + distributes over finite meets and nonempty countable joins;

$$\blacktriangleright \quad \forall n (n \cdot a \leq (n+1) \cdot b) \implies a \leq b \text{ (regular)}.$$

With meets and joins

A regular positive σ -frame-monoid $(A, +, 0, \leq, \bigvee, \land, \infty)$ is:

- ▶ a partially ordered comm monoid $(A, +, 0, \leq)$, with + monotone;
- with least element 0 (**positive**) and greatest element ∞ ;
- ▶ with ctbl joins and finite meets s.t. $a \land \bigvee_i b_i = \bigvee_i (a \land b_i)$;
- + distributes over finite meets and nonempty countable joins;

$$\blacktriangleright \forall n (n \cdot a \leq (n+1) \cdot b) \implies a \leq b (regular).$$

Proposition (C. 2021+)

Every reg positive σ -frame-monoid A embeds into some $[0,\infty]^X$.

- When A is ctbly pres., $[0,\infty]^X =$ Borel maps on std Borel X.
- ▶ In general, X is a Borel locale.

So the above axiomatize the ctbl univ Horn theory of $[0,\infty]$.

With meets and joins

A regular positive σ -frame-monoid $(A, +, 0, \leq, \bigvee, \land, \infty)$ is:

- ▶ a partially ordered comm monoid $(A, +, 0, \leq)$, with + monotone;
- with least element 0 (**positive**) and greatest element ∞ ;
- ▶ with ctbl joins and finite meets s.t. $a \land \bigvee_i b_i = \bigvee_i (a \land b_i)$;
- + distributes over finite meets and nonempty countable joins;

$$\blacktriangleright \forall n (n \cdot a \leq (n+1) \cdot b) \implies a \leq b (regular).$$

Proposition (C. 2021+)

Every reg positive σ -frame-monoid A embeds into some $[0,\infty]^X$.

- When A is ctbly pres., $[0,\infty]^X =$ Borel maps on std Borel X.
- In general, X is a Borel locale.

So the above axiomatize the ctbl univ Horn theory of $[0,\infty]$.

Previous thm becomes equiv to: every reg pos σ -DCPO-monoid embeds into a reg pos σ -frame-monoid.

In general, an algebra A embeds into a power K^X iff A admits enough homomorphisms into K,

In general, an algebra A embeds into a power K^X iff A admits enough homomorphisms into K, in which case

 $A \hookrightarrow K^{\operatorname{Hom}(A,K)}.$

In general, an algebra A embeds into a power K^X iff A admits enough homomorphisms into K, in which case

 $A \hookrightarrow K^{\operatorname{Hom}(A,K)}$.

▶ Theorem (Tarski 1938) A commutative monoid A admits a homom $f : A \rightarrow [0, \infty]$ with f(a) = 1 iff $\forall n ((n+1) \cdot a \leq n \cdot a)$.

In general, an algebra A embeds into a power K^X iff A admits enough homomorphisms into K, in which case

 $A \hookrightarrow K^{\operatorname{Hom}(A,K)}$.

- Theorem (Tarski 1938) A commutative monoid A admits a homom f : A → [0,∞] with f(a) = 1 iff ∀n((n+1) ⋅ a ≤ n ⋅ a).
- ▶ Theorem (Shortt 1990) For any cardinal alg A and $a \leq b \in A$, there is a monoid homom $f : A \rightarrow [0, \infty]$ with f(a) > f(b).

In general, an algebra A embeds into a power K^X iff A admits enough homomorphisms into K, in which case

 $A \hookrightarrow K^{\operatorname{Hom}(A,K)}$.

- Theorem (Tarski 1938) A commutative monoid A admits a homom f : A → [0,∞] with f(a) = 1 iff ∀n((n+1) ⋅ a ≤ n ⋅ a).
- ▶ Theorem (Shortt 1990) For any cardinal alg A and a $\leq b \in A$, there is a monoid homom $f : A \rightarrow [0, \infty]$ with f(a) > f(b).

▶ Wehrung (1990s) developed "finitary" theory of CAs in detail.

In general, an algebra A embeds into a power K^X iff A admits enough homomorphisms into K, in which case

 $A \hookrightarrow K^{\operatorname{Hom}(A,K)}$.

- Theorem (Tarski 1938) A commutative monoid A admits a homom f : A → [0,∞] with f(a) = 1 iff ∀n((n+1) ⋅ a ≤ n ⋅ a).
- ▶ Theorem (Shortt 1990) For any cardinal alg A and $a \not\leq b \in A$, there is a monoid homom $f : A \to [0, \infty]$ with f(a) > f(b).
- ▶ Wehrung (1990s) developed "finitary" theory of CAs in detail. Theorem (Wehrung 1992) A partially ordered monoid embeds into a power of [0,∞] iff it is regular and positive.

In general, an algebra A embeds into a power K^X iff A admits enough homomorphisms into K, in which case

 $A \hookrightarrow K^{\operatorname{Hom}(A,K)}$.

- Theorem (Tarski 1938) A commutative monoid A admits a homom f : A → [0,∞] with f(a) = 1 iff ∀n((n+1) ⋅ a ≤ n ⋅ a).
- ▶ Theorem (Shortt 1990) For any cardinal alg A and a $\leq b \in A$, there is a monoid homom $f : A \rightarrow [0, \infty]$ with f(a) > f(b).
- ▶ Wehrung (1990s) developed "finitary" theory of CAs in detail. Theorem (Wehrung 1992) A partially ordered monoid embeds into a power of [0,∞] iff it is regular and positive.
 - key lemma: regular ⇒ cancellation

In general, an algebra A embeds into a power K^X iff A admits enough homomorphisms into K, in which case

 $A \hookrightarrow K^{\operatorname{Hom}(A,K)}$.

- Theorem (Tarski 1938) A commutative monoid A admits a homom f : A → [0,∞] with f(a) = 1 iff ∀n((n+1) ⋅ a ≤ n ⋅ a).
- ▶ Theorem (Shortt 1990) For any cardinal alg A and a $\leq b \in A$, there is a monoid homom $f : A \rightarrow [0, \infty]$ with f(a) > f(b).
- ▶ Wehrung (1990s) developed "finitary" theory of CAs in detail. Theorem (Wehrung 1992) A partially ordered monoid embeds into a power of [0,∞] iff it is regular and positive.
 - \blacktriangleright key lemma: regular \Longrightarrow cancellation

Definition (ess. Wehrung 1993) For $a, b \in A$,

 $\inf(b/a) := \sup\{m/n \mid m \cdot a \le n \cdot b\}.$

In general, an algebra A embeds into a power K^X iff A admits enough homomorphisms into K, in which case

 $A \hookrightarrow K^{\operatorname{Hom}(A,K)}$.

- Theorem (Tarski 1938) A commutative monoid A admits a homom f : A → [0,∞] with f(a) = 1 iff ∀n((n+1) ⋅ a ≤ n ⋅ a).
- ▶ Theorem (Shortt 1990) For any cardinal alg A and $a \not\leq b \in A$, there is a monoid homom $f : A \rightarrow [0, \infty]$ with f(a) > f(b).
- ▶ Wehrung (1990s) developed "finitary" theory of CAs in detail. Theorem (Wehrung 1992) A partially ordered monoid embeds into a power of [0,∞] iff it is regular and positive.
 - \blacktriangleright key lemma: regular \Longrightarrow cancellation

Definition (ess. Wehrung 1993) For $a, b \in A$,

 $\inf(b/a) := \sup\{m/n \mid m \cdot a \le n \cdot b\}.$

 $\inf(b/a)\inf(c/b) \leq \inf(c/a) \implies$ "[0, ∞]-enriched poset"

In general, an algebra A embeds into a power K^X iff A admits enough homomorphisms into K, in which case

 $A \hookrightarrow K^{\operatorname{Hom}(A,K)}$.

Other classical embedding theorems:

- ▶ Hahn–Banach: every Banach sp admits enough homoms to \mathbb{R} .
- ▶ Gelfand–Mazur: every comm C*-alg admits enough homoms to \mathbb{C} .
- ▶ Baer: every abelian group admits enough homoms to \mathbb{Q}/\mathbb{Z} .
- BPIT: every Bool alg admits enough homoms to 2.
- Similarly for distributive lattices.

In general, an algebra A embeds into a power K^X iff A admits enough homomorphisms into K, in which case

 $A \hookrightarrow K^{\operatorname{Hom}(A,K)}$.

Other classical embedding theorems:

- ▶ Hahn–Banach: every Banach sp admits enough homoms to \mathbb{R} .
- ▶ Gelfand–Mazur: every comm C*-alg admits enough homoms to \mathbb{C} .
- ▶ Baer: every abelian group admits enough homoms to \mathbb{Q}/\mathbb{Z} .
- ▶ BPIT: every Bool alg admits enough homoms to 2.
- Similarly for distributive lattices.

Many such thms can be derived constructively from BPIT:

In general, an algebra A embeds into a power K^X iff A admits enough homomorphisms into K, in which case

 $A \hookrightarrow K^{\operatorname{Hom}(A,K)}$.

Other classical embedding theorems:

- ▶ Hahn–Banach: every Banach sp admits enough homoms to \mathbb{R} .
- ▶ Gelfand–Mazur: every comm C*-alg admits enough homoms to \mathbb{C} .
- ▶ Baer: every abelian group admits enough homoms to \mathbb{Q}/\mathbb{Z} .
- ▶ BPIT: every Bool alg admits enough homoms to 2.
- Similarly for distributive lattices.

Many such thms can be derived constructively from BPIT:

• (In ZF) For a dist lat A, $A \hookrightarrow \langle A \rangle_{\mathsf{Bool}} := \mathsf{free Bool} \mathsf{ alg over } A.$

$$\blacktriangleright \text{ So } A \hookrightarrow \langle A \rangle_{\text{Bool}} \xrightarrow[\text{BPIT}]{} 2^{\text{Hom}_{\text{Bool}}(\langle A \rangle_{\text{Bool}}, 2)} \cong 2^{\text{Hom}_{\text{DistLat}}(A, 2)}.$$

Infinitary algebras often do not admit enough homoms:

Not every Boolean σ-algebra (ctbly complete Bool alg) admits enough homoms to 2 (e.g., MALG([0, 1], λ)).

Infinitary algebras often do not admit enough homoms:

- Not every Boolean σ-algebra (ctbly complete Bool alg) admits enough homoms to 2 (e.g., MALG([0, 1], λ)).
- (Loomis–Sikorski 1940s) For every *ctbly presented* Bool σ -alg A,

 $A \hookrightarrow 2^{\operatorname{Hom}(A,2)}$

Infinitary algebras often do *not* admit enough homoms:

- Not every Boolean σ-algebra (ctbly complete Bool alg) admits enough homoms to 2 (e.g., MALG([0, 1], λ)).
- ► (Loomis–Sikorski 1940s) For every *ctbly presented* Bool σ -alg A, $A \longrightarrow 2^{\text{Hom}(A,2)}$

with image consisting of the Borel maps on $Hom(A, 2) \subseteq 2^A$, which is a std Borel space.

Infinitary algebras often do not admit enough homoms:

- Not every Boolean σ-algebra (ctbly complete Bool alg) admits enough homoms to 2 (e.g., MALG([0, 1], λ)).
- ► (Loomis–Sikorski 1940s) For every *ctbly presented* Bool σ -alg A, $A \cong \mathcal{B}(\operatorname{Hom}(A, 2)) \subseteq 2^{\operatorname{Hom}(A, 2)}$

with image consisting of the Borel maps on $Hom(A, 2) \subseteq 2^A$, which is a std Borel space. $\mathcal{B}(Hom(A, 2))$

Infinitary algebras often do not admit enough homoms:

- Not every Boolean σ-algebra (ctbly complete Bool alg) admits enough homoms to 2 (e.g., MALG([0, 1], λ)).
- ► (Loomis–Sikorski 1940s) For every *ctbly presented* Bool σ -alg A, $A \cong \mathcal{B}(\text{Hom}(A, 2)) \subseteq 2^{\text{Hom}(A, 2)}$

with image consisting of the Borel maps on Hom(A, 2) ⊆ 2^A, which is a std Borel space.
(Isbell 1972?) Every σ-frame A, i.e., poset w/ ∧ and ctbl ∨ over which ∧ distributes, embeds into ⟨A⟩_{σBool}.

Infinitary algebras often do *not* admit enough homoms:

- Not every Boolean σ-algebra (ctbly complete Bool alg) admits enough homoms to 2 (e.g., MALG([0, 1], λ)).
- ► (Loomis–Sikorski 1940s) For every *ctbly presented* Bool σ -alg A, $A \cong \mathcal{B}(\text{Hom}(A, 2)) \subseteq 2^{\text{Hom}(A, 2)}$

with image consisting of the Borel maps on $Hom(A, 2) \subseteq 2^A$, which is a std Borel space. $\mathcal{B}(Hom(A, 2))$

- ► (Isbell 1972?) Every σ-frame A, i.e., poset w/ ∧ and ctbl ∨ over which ∧ distributes, embeds into ⟨A⟩_{σBool}.
- Corollary Every ctbly pres σ -frame A embeds into $2^{\text{Hom}(A,2)}$,

Infinitary algebras often do *not* admit enough homoms:

- Not every Boolean σ-algebra (ctbly complete Bool alg) admits enough homoms to 2 (e.g., MALG([0, 1], λ)).
- ► (Loomis–Sikorski 1940s) For every *ctbly presented* Bool σ -alg A, $A \cong \mathcal{B}(\text{Hom}(A, 2)) \subseteq 2^{\text{Hom}(A, 2)}$

with image consisting of the Borel maps on $Hom(A, 2) \subseteq 2^A$, which is a std Borel space. $\mathcal{B}(Hom(A, 2))$

- (Isbell 1972?) Every σ-frame A, i.e., poset w/ ∧ and ctbl ∨ over which ∧ distributes, embeds into ⟨A⟩_{σBool}.
- Corollary Every ctbly pres σ-frame A embeds into 2^{Hom(A,2)}, w/ image consisting of open sets in the quasi-Polish space Hom(A, 2) (de Brecht 2013, Heckmann 2015, ...).

Infinitary algebras often do *not* admit enough homoms:

- Not every Boolean σ-algebra (ctbly complete Bool alg) admits enough homoms to 2 (e.g., MALG([0, 1], λ)).
- ► (Loomis–Sikorski 1940s) For every *ctbly presented* Bool σ -alg A, $A \cong \mathcal{B}(\text{Hom}(A, 2)) \subseteq 2^{\text{Hom}(A, 2)}$

with image consisting of the Borel maps on $Hom(A, 2) \subseteq 2^A$, which is a std Borel space. $\mathcal{B}(Hom(A, 2))$

- (Isbell 1972?) Every σ-frame A, i.e., poset w/ ∧ and ctbl ∨ over which ∧ distributes, embeds into ⟨A⟩_{σBool}.
- Corollary Every ctbly pres σ-frame A embeds into 2^{Hom(A,2)}, w/ image consisting of open sets in the quasi-Polish space Hom(A,2) (de Brecht 2013, Heckmann 2015, ...).

A Borel locale X is an arbitrary Boolean σ -algebra $\mathcal{B}(X)$. A Borel map $X \to [0, \infty]$ is a Bool σ -homom $\mathcal{B}([0, \infty]) \to \mathcal{B}(X)$.

Proposition (C. 2021+)

Every reg positive σ -frame-monoid A embeds into some $[0,\infty]^X$.

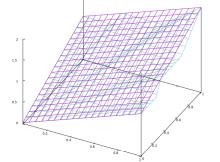
- When A is ctbly pres., $[0,\infty]^X =$ Borel maps on std Borel X.
- ▶ In general, X is a Borel locale.

Proposition (C. 2021+)

Every reg positive σ -frame-monoid A embeds into some $[0,\infty]^X$.

• When A is ctbly pres., $[0,\infty]^X =$ Borel maps on std Borel X.

Lemma (ess. classical) " $a + b = \bigvee_n \bigvee_{p+q=n} (a/\frac{p}{n} \wedge b/\frac{q}{n})$ ". Sketch. In $[0, \infty]$, n = 4:



Proposition (C. 2021+)

Every reg positive σ -frame-monoid A embeds into some $[0,\infty]^X$.

• When A is ctbly pres., $[0, \infty]^X =$ Borel maps on std Borel X.

Lemma (ess. classical) " $a + b = \bigvee_n \bigvee_{p+q=n} (a/\frac{p}{n} \wedge b/\frac{q}{n})$ ".

So, enough to consider σ -frames equipped w/ \mathbb{N}^+ -action.

Proposition (C. 2021+)

Every reg positive σ -frame-monoid A embeds into some $[0,\infty]^X$.

• When A is ctbly pres., $[0, \infty]^X =$ Borel maps on std Borel X.

Lemma (ess. classical) " $a + b = \bigvee_n \bigvee_{p+q=n} (a/\frac{p}{n} \wedge b/\frac{q}{n})$ ".

So, enough to consider σ -frames equipped w/ \mathbb{N}^+ -action.

General fact If an algebra A is countably presented wrt

$$(\overbrace{+}^{\mathsf{finitary}}, \overbrace{0, \leq, \bigvee, \land, \infty}^{\mathsf{possibly infinitary}})$$

then it is also countably presented w/o +, i.e., as a σ -frame.

Proposition (C. 2021+)

Every reg positive σ -frame-monoid A embeds into some $[0,\infty]^X$.

• When A is ctbly pres., $[0, \infty]^X =$ Borel maps on std Borel X.

Lemma (ess. classical) " $a + b = \bigvee_n \bigvee_{p+q=n} (a/\frac{p}{n} \wedge b/\frac{q}{n})$ ".

So, enough to consider σ -frames equipped w/ \mathbb{N}^+ -action.

General fact If an algebra A is countably presented wrt

$$(\overbrace{+}^{\mathsf{finitary}}, \overbrace{0, \leq, \bigvee, \land, \infty}^{\mathsf{possibly infinitary}})$$

then it is also countably presented w/o +, i.e., as a σ -frame. So in case 1, A is dual to a quasi-Polish space X w/ \mathbb{N}^+ -action.

Proposition (C. 2021+)

Every reg positive σ -frame-monoid A embeds into some $[0,\infty]^X$.

• When A is ctbly pres., $[0,\infty]^X = Borel maps on std Borel X$.

Lemma (ess. classical) " $a + b = \bigvee_n \bigvee_{p+q=n} (a/\frac{p}{n} \wedge b/\frac{q}{n})$ ".

So, enough to consider σ -frames equipped w/ \mathbb{N}^+ -action.

General fact If an algebra A is countably presented wrt

$$(\overbrace{+}^{\mathsf{finitary}}, \overbrace{0, \leq, \bigvee, \land, \infty}^{\mathsf{possibly infinitary}})$$

then it is also countably presented w/o +, i.e., as a σ -frame. So in case 1, A is dual to a quasi-Polish space X w/ \mathbb{N}^+ -action. $\{X \to 2\} \cong \{\mathbb{N}^+\text{-eqvar. } X \to 2^{\mathbb{N}^+}\} \hookrightarrow \{\mathbb{N}^+\text{-eqv. } X \to [0,\infty]\}.$

Theorem (C. 2021+)

Every regular positive σ -DCPO-monoid A embeds into the free regular positive σ -frame-monoid $\langle A \rangle$ it generates.

Theorem (C. 2021+)

Every regular positive σ -DCPO-monoid A embeds into the free regular positive σ -frame-monoid $\langle A \rangle$ it generates.

 Presenting algebras is hard in general b/c of interactions between relations (think groups).

Theorem (C. 2021+)

Every regular positive σ -DCPO-monoid A embeds into the free regular positive σ -frame-monoid $\langle A \rangle$ it generates.

- Presenting algebras is hard in general b/c of interactions between relations (think groups).
- Lattice-type algebras are much easier to present, due to nice canonical forms for "words" in free/presented algebras.

Theorem (C. 2021+)

Every regular positive σ -DCPO-monoid A embeds into the free regular positive σ -frame-monoid $\langle A \rangle$ it generates.

- Presenting algebras is hard in general b/c of interactions between relations (think groups).
- Lattice-type algebras are much easier to present, due to nice canonical forms for "words" in free/presented algebras.
- ▶ For a poset A, its free poset w/ arbitrary \bigvee is

 $\mathcal{L}(A) := \{ \text{lower (i.e., downward-closed) } \mathfrak{a} \subseteq A \}.$

Theorem (C. 2021+)

Every regular positive σ -DCPO-monoid A embeds into the free regular positive σ -frame-monoid $\langle A \rangle$ it generates.

- Presenting algebras is hard in general b/c of interactions between relations (think groups).
- Lattice-type algebras are much easier to present, due to nice canonical forms for "words" in free/presented algebras.
- For a poset A, its free poset w/ arbitrary \bigvee is

 $\mathcal{L}(A) := \{$ lower (i.e., downward-closed) $\mathfrak{a} \subseteq A \}.$

If A already has certain joins, to preserve them, take *L*(A) := {a ∈ L(A) | a closed under existing joins}.

Theorem (C. 2021+)

Every regular positive σ -DCPO-monoid A embeds into the free regular positive σ -frame-monoid $\langle A \rangle$ it generates.

- Presenting algebras is hard in general b/c of interactions between relations (think groups).
- Lattice-type algebras are much easier to present, due to nice canonical forms for "words" in free/presented algebras.
- For a poset A, its free poset w/ arbitrary \bigvee is

 $\mathcal{L}(A) := \{ \text{lower (i.e., downward-closed) } \mathfrak{a} \subseteq A \}.$

If A already has certain joins, to preserve them, take

 $\overline{\mathcal{L}}(A) := \{ \mathfrak{a} \in \mathcal{L}(A) \mid \mathfrak{a} \text{ closed under existing joins} \}.$

Each $\downarrow a := \{b \mid b \le a\}$ is closed under all existing joins,

Theorem (C. 2021+)

Every regular positive σ -DCPO-monoid A embeds into the free regular positive σ -frame-monoid $\langle A \rangle$ it generates.

- Presenting algebras is hard in general b/c of interactions between relations (think groups).
- Lattice-type algebras are much easier to present, due to nice canonical forms for "words" in free/presented algebras.
- For a poset A, its free poset w/ arbitrary \bigvee is

 $\mathcal{L}(A) := \{ \text{lower (i.e., downward-closed) } \mathfrak{a} \subseteq A \}.$

If A already has certain joins, to preserve them, take

 $\overline{\mathcal{L}}(A) := \{ \mathfrak{a} \in \mathcal{L}(A) \mid \mathfrak{a} \text{ closed under existing joins} \}.$

Each $\downarrow a := \{b \mid b \le a\}$ is closed under all existing joins, so $\downarrow : A \hookrightarrow \overline{\mathcal{L}}(A)$. (Relations are "independent"!)

Theorem (C. 2021+)

Every regular positive σ -DCPO-monoid A embeds into the free regular positive σ -frame-monoid $\langle A \rangle$ it generates.

Main Lemma 1 For a regular positive PO-monoid A, its free reg pos completion under meets over which + distributes is presented by

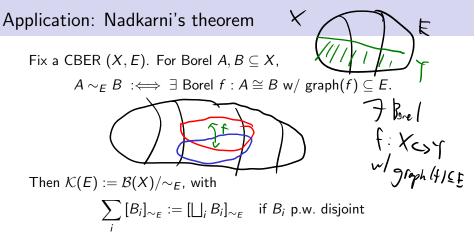
$$\inf\{q/p \mid pa_n \le qb\} \le 1 \implies \bigwedge_n a_n \le b,$$

$$na_1 \land \dots \land na_n + b \le a_1 + \dots + a_n + b.$$

Moreover, if A had directed joins over + distributes, then + with a finite meet still distributes over these directed joins.

Main Lemma 2 For a reg pos PO-monoid A with \land , its free reg pos completion under joins over which $+, \land$ distribute is presented by

$$\sup\{p/q \mid pa \le qb_n\} \ge 1 \implies a \le \bigvee_n b_n,$$
$$a \land b + c \le a + b \implies c \le a \lor b.$$



is a cardinal algebra (Tarski), assuming B_i can be disjointified. If not:

• replace
$$(X, E)$$
 with $(X imes \mathbb{N}, E imes \mathbb{I}_{\mathbb{N}})$, or

• replace
$$\mathcal{B}(X) = \mathcal{B}(X, 2)$$
 with $\mathcal{B}(X, \overline{\mathbb{N}})$

Note $\operatorname{Hom}(\mathcal{K}(E), [0, \infty]) \cong \{E \text{-invariant measures on } X\} =: \operatorname{INV}_{E}^{*}(X).$

Theorem (Nadkarni 1990, Becker-Kechris 1996)

$$\mathcal{K}(E) \hookrightarrow [0,\infty]^{|\mathbb{NV}_{E}^{*}(X)}. \qquad (f A \notin \mathbb{E}^{\mathbb{R}} \Longrightarrow) \supseteq \mathcal{N} \quad s. t. \mathcal{N}(A) \xrightarrow{} \mathbb{P}(E)$$

Theorem (Nadkarni 1990, Becker–Kechris 1996) $\mathcal{K}(E) \hookrightarrow [0,\infty]^{\mathsf{INV}_{E}^{*}(X)}.$

Proof sketch. $\mathcal{K}(E)$ is *not* countably presented.

Theorem (Nadkarni 1990, Becker–Kechris 1996) $\mathcal{K}(E) \hookrightarrow [0,\infty]^{\mathsf{INV}_E^*(X)}.$

Proof sketch. $\mathcal{K}(E)$ is *not* countably presented. Suppose X has (0-d) Polish top, and E is induced by cts $\Gamma \curvearrowright X$.

Theorem (Nadkarni 1990, Becker–Kechris 1996) $\mathcal{K}(E) \hookrightarrow [0,\infty]^{\mathsf{INV}_E^*(X)}.$

Proof sketch. $\mathcal{K}(E)$ is *not* countably presented. Suppose X has (0-d) Polish top, and E is induced by cts $\Gamma \curvearrowright X$. Let

$$A := \left\langle \mathcal{O}(X) \text{ as } \sigma\text{-DCPO} \middle| \begin{array}{l} \varnothing = 0, \\ U + V = U \cap V + U \cup V, \\ \gamma \cdot U = U \quad \forall \gamma \in \Gamma \end{array} \right\rangle_{\mathsf{RegPos}\sigma\mathsf{DCPOMon}}$$

Theorem (Nadkarni 1990, Becker–Kechris 1996) $\mathcal{K}(E) \hookrightarrow [0,\infty]^{\mathsf{INV}_E^*(X)}.$

Proof sketch. $\mathcal{K}(E)$ is *not* countably presented. Suppose X has (0-d) Polish top, and E is induced by cts $\Gamma \curvearrowright X$. Let

$$A := \left\langle \mathcal{O}(X) \text{ as } \sigma\text{-DCPO} \middle| \begin{array}{l} \varnothing = 0, \\ U + V = U \cap V + U \cup V, \\ \gamma \cdot U = U \quad \forall \gamma \in \mathsf{\Gamma} \end{array} \right\rangle_{\mathsf{RegPos}\sigma\mathsf{DCPOMon}}$$

A map $\mu:\mathcal{O}(X)
ightarrow [0,\infty]$ preserving $\leq,
atural$ and satisfying

$$\mu(\varnothing) = 0, \qquad \mu(U) + \mu(V) = \mu(U \cap V) + \mu(U \cup V)$$

is called a valuation, and extends to a Borel measure.

Theorem (Nadkarni 1990, Becker–Kechris 1996) $\mathcal{K}(E) \hookrightarrow [0,\infty]^{\mathsf{INV}_E^*(X)}.$

Proof sketch. $\mathcal{K}(E)$ is *not* countably presented. Suppose X has (0-d) Polish top, and E is induced by cts $\Gamma \curvearrowright X$. Let

$$A := \left\langle \mathcal{O}(X) \text{ as } \sigma\text{-DCPO} \middle| \begin{array}{l} \varnothing = 0, \\ U + V = U \cap V + U \cup V, \\ \gamma \cdot U = U \quad \forall \gamma \in \mathsf{\Gamma} \end{array} \right\rangle_{\mathsf{RegPos}\sigma\mathsf{DCPOMon}}$$

A map $\mu:\mathcal{O}(X)
ightarrow [0,\infty]$ preserving $\leq,
mathbf{V}$ and satisfying

$$\mu(\varnothing) = 0, \qquad \mu(U) + \mu(V) = \mu(U \cap V) + \mu(U \cup V)$$

is called a **valuation**, and extends to a Borel measure. So $INV_E(X) \twoheadrightarrow Hom(A, [0, \infty])$;

Theorem (Nadkarni 1990, Becker–Kechris 1996) $\mathcal{K}(E) \hookrightarrow [0,\infty]^{\mathsf{INV}_E^*(X)}.$

Proof sketch. $\mathcal{K}(E)$ is *not* countably presented. Suppose X has (0-d) Polish top, and E is induced by cts $\Gamma \curvearrowright X$. Let

$$A := \left\langle \mathcal{O}(X) \text{ as } \sigma\text{-DCPO} \middle| \begin{array}{l} \varnothing = 0, \\ U + V = U \cap V + U \cup V, \\ \gamma \cdot U = U \quad \forall \gamma \in \mathsf{\Gamma} \end{array} \right\rangle_{\mathsf{RegPos}\sigma\mathsf{DCPOMon}}$$

A map $\mu:\mathcal{O}(X) \to [0,\infty]$ preserving $\leq,
mathbf{V}$ and satisfying

$$\mu(\varnothing) = 0, \qquad \mu(U) + \mu(V) = \mu(U \cap V) + \mu(U \cup V)$$

is called a valuation, and extends to a Borel measure.

So $INV_E(X) \rightarrow Hom(A, [0, \infty])$; and A is ctbly presented.

Theorem (Nadkarni 1990, Becker–Kechris 1996) $\mathcal{K}(E) \hookrightarrow [0,\infty]^{\mathsf{INV}_E^*(X)}.$

Proof sketch. $\mathcal{K}(E)$ is *not* countably presented. Suppose X has (0-d) Polish top, and E is induced by cts $\Gamma \curvearrowright X$. Let

$$A := \left\langle \mathcal{O}(X) \text{ as } \sigma\text{-DCPO} \middle| \begin{array}{l} \varnothing = 0, \\ U + V = U \cap V + U \cup V, \\ \gamma \cdot U = U \quad \forall \gamma \in \mathsf{\Gamma} \end{array} \right\rangle_{\mathsf{RegPos}\sigma\mathsf{DCPOMon}}$$

A map $\mu:\mathcal{O}(X) \to [0,\infty]$ preserving $\leq,
mathbf{V}$ and satisfying

$$\mu(\varnothing) = 0, \qquad \mu(U) + \mu(V) = \mu(U \cap V) + \mu(U \cup V)$$

is called a valuation, and extends to a Borel measure.

So $INV_E(X) \twoheadrightarrow Hom(A, [0, \infty])$; and A is ctbly presented. Given $U \leq V \in \mathcal{K}(E)$, make U, V open; then $U \leq V \in A$.

Other connections

Regular positive (σ-)frame-monoids with real multiples are dual to (σ-)locales with an action of (0, ∞]. It should be possible to analyze these using the Becker–Kechris machinery.

Other connections

- Regular positive (σ-)frame-monoids with real multiples are dual to (σ-)locales with an action of (0, ∞]. It should be possible to analyze these using the Becker–Kechris machinery.
- Regular positive (σ-)DCPO-monoids should be dual to "locally convex regular positive localic monoids" of some sort. Also closely related: Vickers' (~2010) work on locales of valuations; measure quantifiers.

Other connections

- Regular positive (σ-)frame-monoids with real multiples are dual to (σ-)locales with an action of (0, ∞]. It should be possible to analyze these using the Becker–Kechris machinery.
- Regular positive (σ-)DCPO-monoids should be dual to "locally convex regular positive localic monoids" of some sort. Also closely related: Vickers' (~2010) work on locales of valuations; measure quantifiers.
- For a CBER E, the cardinal algebra K(E) in fact has ∧; homomorphisms preserving these (and ∨) correspond to ergodic measures. Showing enough homoms preserving these should be related to ergodic decomposition.