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Cardinal algebras

A cardinal algebra (Tarski 1949) A = (A,+, 0,
�

) consists of

� a commutative monoid (A,+, 0);

� an infinitary operation
�

: AN → A; obeying the axioms

� a0 +
�

i<∞ ai+1 =

� �
i<∞(ai + bi ) =

� (refinement) ∀a+ b =
�

i<∞ ci ,

c0 c1 c2 c3 · · ·
a
b

� (remainder) ∀(ai = bi + ai+1)i∈N,
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Examples of cardinal algebras

� N := N ∪ {∞}
� [0,∞]

� all cardinals (< κ) (in ZF+DC)

� (Kechris–Macdonald 2016) For CBERs (X ,E ), (Y ,F ),

E ∼B F :⇐⇒ ∃ Borel f : X → Y inducing X/E ∼= Y /F

Then {all CBERS}/∼B is a cardinal algebra under
�
.
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is a partial order (Schröder–Bernstein theorem).

�
�

i<∞
ai =

�

n<∞

�

i<n

ai .



Properties of cardinal algebras

� (Tarski) All commutativity + associativity laws hold, e.g.,
�

i<∞
ai =

�

i<∞
af (i) for any f : N ∼= N

� The preorder

a ≤ b :⇐⇒ ∃c (a + c = b)

is a partial order (Schröder–Bernstein theorem).
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� (Tarski) All commutativity + associativity laws hold, e.g.,
�

i<∞
ai =

�

i<∞
af (i) for any f : N ∼= N

� The preorder

a ≤ b :⇐⇒ ∃c (a + c = b)

is a partial order (Schröder–Bernstein theorem).

�
�

i<∞
ai =

�

n<∞

�

i<n

ai .

� Corollary: every a0 ≤ a1 ≤ a2 ≤ · · · has a join,
over which + distributes: b + ↑�

i ai =
↑�
i (b + ai ).

� If binary meets exist, then so do binary joins, and

a ∧�
i<∞ bi =

�
i<∞(a ∧ bi ),

a+ (b ∧ c) = (a + b) ∧ (a + c),

a+ (b ∨ c) = (a + b) ∨ (a + c).
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� (cancellation) For 1 ≤ n < ∞, if n · a = n · b, then a = b.
More generally, if n · a ≤ n · b, then a ≤ b.

� (Tarski, Chuaqui 1968) Thus, ∀a ∃≤1a/n s.t. n · (a/n) = a.

This extends to a σ-additive action

N × A −→ A

(r , a) �−→ r · a
of the σ-submonoid N ⊆ [0,∞] generated by all such 1/n
(either N/n for the largest such n, or [0,∞]).

� (Fillmore 1964) If na ≤ (n + 1)b for all n ∈ N, then a ≤ b.

Moral: all “natural” properties of [0,∞] seem to hold in all
cardinal algebras.
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A universal Horn axiom (in L∞∞) is one of the form

∀�x
��

i

φi (�x) =⇒ ψ(�x)
�

(φi ,ψ atomic).

General fact A structure M satisfies the universal Horn theory of a
class of structures K iff it embeds into a product of structures in K.
Moreover, one can present models �G | R� of such axioms.

Regard a card alg A as a (+, 0,≤, ↑�)-structure, obeying axioms:

� (A,≤, ↑�) is a σ-DCPO:

� (A,+, 0) is a (comm) monoid, s.t.

� every a ∈ A is positive:

� A is regular:

A general model is a regular positive σ-DCPO-monoid.
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Embedding σ-DCPO-monoids

Theorem (C. 2021+)

Every reg positive σ-DCPO-monoid A embeds into some [0,∞]X .

� When A is ctbly pres.,

� In general,

General fact A structure M satisfies the universal Horn theory of a
class of structures K iff it embeds into a product of structures in K.

Corollary

The axioms of regular positive σ-DCPO-monoids axiomatize the
(countable) universal (Horn) theory of cardinal algebras (or [0,∞]).
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� with least element 0 (positive) and greatest element ∞;

� with ctbl joins and finite meets s.t. a ∧�
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�
i (a ∧ bi );

� + distributes over finite meets and nonempty countable joins;

� ∀n (n · a ≤ (n + 1) · b) =⇒ a ≤ b (regular).

Proposition (C. 2021+)

Every reg positive σ-frame-monoid A embeds into some [0,∞]X .

� When A is ctbly pres., [0,∞]X = Borel maps on std Borel X .

� In general, X is a Borel locale.

So the above axiomatize the ctbl univ Horn theory of [0,∞].

Previous thm becomes equiv to: every reg pos σ-DCPO-monoid
embeds into a reg pos σ-frame-monoid.
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� Theorem (Tarski 1938) A commutative monoid A admits a
homom f : A → [0,∞] with f (a) = 1 iff ∀n ((n + 1) · a �≤ n · a).

� Theorem (Shortt 1990) For any cardinal alg A and a �≤ b ∈ A,
there is a monoid homom f : A → [0,∞] with f (a) > f (b).

� Wehrung (1990s) developed “finitary” theory of CAs in detail.

Theorem (Wehrung 1992) A partially ordered monoid
embeds into a power of [0,∞] iff it is regular and positive.
� key lemma: regular =⇒ cancellation

Definition (ess. Wehrung 1993) For a, b ∈ A,

inf(b/a) := sup{m/n | m · a ≤ n · b}.
inf(b/a) inf(c/b) ≤ inf(c/a) =⇒ “[0,∞]-enriched poset”
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In general, an algebra A embeds into a power KX iff A admits
enough homomorphisms into K , in which case

A �−→ KHom(A,K).

Other classical embedding theorems:

� Hahn–Banach: every Banach sp admits enough homoms to R.
� Gelfand–Mazur: every comm C∗-alg admits enough homoms to C.
� Baer: every abelian group admits enough homoms to Q/Z.
� BPIT: every Bool alg admits enough homoms to 2.

� Similarly for distributive lattices.

Many such thms can be derived constructively from BPIT:

� (In ZF) For a dist lat A, A �→ �A�Bool := free Bool alg over A.

� So A �→ �A�Bool �−−−→
BPIT

2HomBool(�A�Bool,2) ∼= 2HomDistLat(A,2).
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Infinitary algebras often do not admit enough homoms:

� Not every Boolean σ-algebra (ctbly complete Bool alg)
admits enough homoms to 2 (e.g., MALG([0, 1],λ)).

� (Loomis–Sikorski 1940s) For every ctbly presented Bool σ-alg A,

A ∼= B(Hom(A, 2)) ⊆ 2Hom(A,2)

with image consisting of the Borel maps on Hom(A, 2) ⊆ 2A� �� �
B(Hom(A,2))

,
which is a std Borel space.

� (Isbell 1972?) Every σ-frame A, i.e., poset w/ ∧ and ctbl
�

over which ∧ distributes, embeds into �A�σBool.
� Corollary Every ctbly pres σ-frame A embeds into 2Hom(A,2),

w/ image consisting of open sets in the quasi-Polish space
Hom(A, 2) (de Brecht 2013, Heckmann 2015, . . . ).

A Borel locale X is an arbitrary Boolean σ-algebra B(X ).
A Borel map X → [0,∞] is a Bool σ-homom B([0,∞]) → B(X ).
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� In general, X is a Borel locale.

Lemma (ess. classical) “a+ b =
�

n

�
p+q=n(a/

p
n ∧ b/q

n )”.

So, enough to consider σ-frames equipped w/ N+-action.

General fact If an algebra A is countably presented wrt

(

finitary����
+ ,

possibly infinitary� �� �
0,≤,

�
,∧,∞)

then it is also countably presented w/o +, i.e., as a σ-frame.

So in case 1, A is dual to a quasi-Polish space X w/ N+-action.

{X → 2} ∼= {N+-eqvar. X → 2N
+} �→ {N+-eqv. X → [0,∞]}.
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Embedding σ-DCPO-monoids: some proof ideas

Theorem (C. 2021+)

Every regular positive σ-DCPO-monoid A embeds into the free
regular positive σ-frame-monoid �A� it generates.

� Presenting algebras is hard in general b/c of interactions
between relations (think groups).

� Lattice-type algebras are much easier to present, due to
nice canonical forms for “words” in free/presented algebras.

� For a poset A, its free poset w/ arbitrary
�

is

L(A) := {lower (i.e., downward-closed) a ⊆ A}.
� If A already has certain joins, to preserve them, take

L(A) := {a ∈ L(A) | a closed under existing joins}.
Each ↓a := {b | b ≤ a} is closed under all existing joins,
so ↓ : A �→ L(A). (Relations are “independent”!)



Embedding σ-DCPO-monoids: some proof ideas

Theorem (C. 2021+)

Every regular positive σ-DCPO-monoid A embeds into the free
regular positive σ-frame-monoid �A� it generates.

Main Lemma 1 For a regular positive PO-monoid A, its free reg pos
completion under meets over which + distributes is presented by

inf{q/p | pan ≤ qb} ≤ 1 =⇒ �
n an ≤ b,

na1 ∧ · · · ∧ nan + b ≤ a1 + · · ·+ an + b.

Moreover, if A had directed joins over + distributes, then + with a
finite meet still distributes over these directed joins.

Main Lemma 2 For a reg pos PO-monoid A with ∧, its free reg pos
completion under joins over which +,∧ distribute is presented by

sup{p/q | pa ≤ qbn} ≥ 1 =⇒ a ≤ �
n bn,

a ∧ b + c ≤ a+ b =⇒ c ≤ a ∨ b.



Application: Nadkarni’s theorem

Fix a CBER (X ,E ). For Borel A,B ⊆ X ,

A ∼E B :⇐⇒ ∃ Borel f : A ∼= B w/ graph(f ) ⊆ E .

Then K(E ) := B(X )/∼E , with�

i

[Bi ]∼E
:= [

�
i Bi ]∼E

if Bi p.w. disjoint

is a cardinal algebra (Tarski), assuming Bi can be disjointified.

If not:

� replace (X ,E) with (X × N,E × IN), or
� replace B(X ) = B(X , 2) with B(X ,N)

Note Hom(K(E ), [0,∞]) ∼= {E -invariant measures on X} =: INV∗
E (X ).
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Application: Nadkarni’s theorem

Theorem (Nadkarni 1990, Becker–Kechris 1996)

K(E ) �→ [0,∞]INV∗
E (X ).

Proof sketch. K(E ) is not countably presented.

Suppose X has (0-d) Polish top, and E is induced by cts Γ � X .

Let

A :=

�
O(X ) as σ-DCPO

�������

∅ = 0,

U + V = U ∩ V + U ∪ V ,

γ · U = U ∀γ ∈ Γ

�

RegPosσDCPOMon

.

A map µ : O(X ) → [0,∞] preserving ≤, ↑� and satisfying

µ(∅) = 0, µ(U) + µ(V ) = µ(U ∩ V ) + µ(U ∪ V )

is called a valuation, and extends to a Borel measure.

So INVE (X ) →→ Hom(A, [0,∞]); and A is ctbly presented.
Given U �≤ V ∈ K(E ), make U,V open; then U �≤ V ∈ A.
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Other connections

� Regular positive (σ-)frame-monoids with real multiples are
dual to (σ-)locales with an action of (0,∞]. It should be
possible to analyze these using the Becker–Kechris machinery.

� Regular positive (σ-)DCPO-monoids should be dual to
“locally convex regular positive localic monoids” of some sort.
Also closely related: Vickers’ (∼2010) work on locales of
valuations; measure quantifiers.

� For a CBER E , the cardinal algebra K(E ) in fact has ∧;
homomorphisms preserving these (and ∨) correspond to
ergodic measures. Showing enough homoms preserving these
should be related to ergodic decomposition.


	Cardinal algebras
	Examples of cardinal algebras
	Properties of cardinal algebras
	Properties of cardinal algebras
	Regular positive σ-DCPO-monoids
	Embedding σ-DCPO-monoids
	With meets and joins
	History and context
	History and context
	History and context
	Embedding σ-frame-monoids: proof sketch
	Embedding σ-DCPO-monoids: some proof ideas
	Embedding σ-DCPO-monoids: some proof ideas
	Application: Nadkarni's theorem
	Application: Nadkarni's theorem
	Other connections

